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Identification of Copy Number Variation Hotspots in Human
Populations

Wenqing Fu,1 Feng Zhang,1 Yi Wang,1 Xun Gu,1,2 and Li Jin1,3,*

Copy number variants (CNVs) in the human genome contribute to bothMendelian and complex traits as well as to genomic plasticity in

evolution. The investigation of mutational rates of CNVs is critical to understanding genomic instability and the etiology of the copy

number variation (CNV)-related traits. However, the evaluation of the CNVmutation rate at the genome level poses an insurmountable

practical challenge that requires large samples and accurate typing. In this study, we show that an approximate estimation of the CNV

mutation rate could be achieved by using the phylogeny information of flanking SNPs. This allows a genome-wide comparison of muta-

tion rates between CNVs with the use of vast, readily available data of SNP genotyping. A total of 4187 CNV regions (CNVRs) previously

identified in HapMap populations were investigated in this study. We showed that the mutation rates for the majority of these CNVRs

are at the order of 10�5 per generation, consistent with experimental observations at individual loci. Notably, the mutation rates of 104

(2.5%) CNVRs were estimated at the order of 10�3 per generation; therefore, they were identified as potential hotspots. Additional

analyses revealed that genome architecture at CNV loci has a potential role in incitingmutational hotspots in the human genome. Inter-

estingly, 49 (47%) CNV hotspots include human genes, some of which are known to be functional CNV loci (e.g., CNVs of C4 and b-de-

fensin causing autoimmune diseases and CNVs of HYDINwith implication in control of cerebral cortex size), implicating the important

role of CNV in human health and evolution, especially in common and complex diseases.
Introduction

Recent studies have shown that the presence of copy

number variants (CNVs) in the human genome is substan-

tial, and thousands of CNVs have been identified in

human populations.1,2 CNV mutations can introduce

unprecedented genomic instability in both germline and

somatic cells, which would lead to Mendelian diseases

and complex traits, including cancers.3,4 Investigation of

the CNV mutation rate is, therefore, critical to unraveling

the instability of the human genome and in turn the func-

tional impact of CNVs underlying human traits and

diseases.

The inbreeding across hundreds of generations made it

accessible to study the mutation rate for spontaneous

CNVs in the laboratorymouse strains.5 However, the direct

estimation of germline mutation rate for CNVs in the

human genome is technically challenging. Only a few

copy number variation (CNV) loci have been studied

individually by disease-prevalence calculation, pedigree

analysis, sperm typing, or pooled sperm assay,6–11 but

a systematic investigation of the CNVmutation rate across

the genome has yet to be accomplished. The locus-specific

mutation rates for CNV have been observed to be ~100 to

10,000 times higher than those for nucleotide substitution

rates,3 which not only highlights the instability of CNV

regions but also suggests large variation in CNV mutation

rate.

In order to examine whether such a notable variance of

mutation rate observed between CNV loci is potentially
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due to the inconsistency among various locus-specific

investigatory mothods6–8,10,11 or instead reflects the pres-

ence of CNV mutational hotspots, a genome-wide analysis

for estimation and comparison of CNV mutation rate is

demanded. In this study, we developed a statistical method

called ‘‘CNVMut’’ to evaluate CNV mutation rate across

autosomes of the human genome by utilizing vast, readily

available genotyping data from human populations. This

proposed method was carefully evaluated and validated

via simulation approaches, and it was applied to identi-

fying mutational hotspots of CNVs in HapMap popula-

tions.

Material and Methods

An Algorithm for Approximately Estimating the CNV

Mutation Rate by Using Flanking SNPs
CNVs can be classified as recurrent CNVs with common break-

points and as nonrecurrent CNVs with variable breakpoints.3

A CNV region (CNVR) is usually defined to combine calls from

different individuals as a grouping of CNVs overlapping or in close

proximity to each other, regardless of the potential architectural

complexity.2,12 In this study, a method was proposed for approxi-

mate estimation of the mutation rate for each CNVR. Each CNVR

was treated as a simple marker with potentially multiple alleles,

each with a distinct copy number (0, 1, 2, etc.). Each individual

carries two such alleles in his or her diploid genome.

The SNPs flanking CNV loci often show strong linkage disequi-

librium (LD) with the CNVs,1,12–14 therefore allowing one to trace

CNV mutation events by using the phylogenies of flanking SNPs

constructed by plausible ancestral recombination graphs
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(ARGs).15 ARGs can describe the relationship of chromosome

sequences from a population back to its common ancestor

through events of mutation, recombination, and coalescence,

which are defined under a Wright-Fisher model with recombina-

tion. According to the impact of historical recombination events,

a series of genealogical trees are embedded in the ARG. Each gene-

alogical tree describes the phylogeny for each SNP, which is also

called a ‘‘marginal tree.’’ Following each marginal tree for the

flanking SNPs, we define the tree with the smallest number of

CNV changes as a surrogate of themost parsimonious genealogical

tree for the CNV locus according to the parsimony criterion. The

number of CNV mutations (including both deletion and duplica-

tion) is summarized on the basis of the most parsimonious tree

and can be converted to an approximate estimation of mutation

rate for the CNV locus by simulations.

A brief summary of our statistical method for indirectly

estimating the CNV mutation rate is illustrated in Figure S1

(available online). First, the program Margarita15 was imple-

mented for the construction of plausible ARGs by the SNPs

flanking each CNV locus in one population. The corresponding

marginal tree for each SNP was obtained in this step as well, the

external nodes representing the inferred haplotypes of geno-

typed individuals, the internal nodes representing the ancestral

haplotypes in previous generations, and the root representing

the common ancestral haplotype. Second, an expectation-maxi-

mization (EM) algorithm was used for inferring haplotypes

involving a CNV marker and its flanking SNPs as described by

Kato et al.,16 and we also modified the algorithm to allow the

input of phase-known data (i.e., the preinferred haplotypes of

flanking SNPs obtained from ARG construction). Third, haploid

copy numbers of a CNV marker were superimposed to corre-

sponding external nodes that represented the preinferred haplo-

types of flanking SNPs for each marginal tree, and they were

inferred for each internal node by traversing all the binary tree

units (BTUs; Figure S1D). Lastly, the number of mutation events

was counted for all BTUs, the smallest count being taken as the

most parsimonious estimator. In particular, deletion events and

duplication events were counted separately along the most parsi-

monious marginal tree, with the assumption that a tree

requiring fewer substitutions is better than one that requires

more, for evaluation of the relative mutation rate between dele-

tion and duplication. This detailed procedure is described in

Appendix A.

Because the real phylogeny was unknown, the average of the

estimator for R plausible ARGs (R ¼ 100 here) was taken. For

example, the cumulative mutation count, M, was estimated by

taking an average of the inferred number of mutations over R

(R ¼ 100 here) plausible ARGs:

M ¼
PR

r¼1

minL
l¼1fMrlg

N � R ;

where Mrl is the estimator of the mutation number for the l-th

marginal tree of the r-th plausible ARG, and N is the sample size.

The statistic M measures the minimum effective number of

mutation events instead of mutation rate in a population,

following the parsimony assumption; i.e., the estimation depends

on the observed cumulativemutation events under an assumption

of constant evolution rate. It allows an indirect comparison of

mutation rates between CNV loci and between populations. The

order of magnitude of the mutation rate could be converted

from the M statistic with the use of a simulation approach.
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Simulation in Evaluating the Algorithm Performance
Given that the aforementioned algorithm invoked several

assumptions that may not biologically realistic, it was evaluated

via a simulation approach. In particular, we interrogated the effect

of several factors on the estimation ofM, including mutation rate,

effective population size, number of flanking SNPs, sample size,

recombination rate between the CNV locus and its flanking

SNPs, and that between adjacent SNPs. The program SIMCOAL217

was employed in simulating the neutral genetic diversity of a CNV

marker and its flanking SNPs under different mutation rates and

demographic models (see Appendix B).
Algorithm Implementation for Real Data
Genotype data for the unrelated samples from the HapMap Phase

II project were included in our analysis: 60 Yoruba in Ibadan,

Nigeria (YRI), 60 Utah residents with ancestry from northern

and western Europe (CEU), and 89 Asians (45 Han Chinese from

Beijing [CHB] and 44 Japanese from Tokyo [JPT]; CHBþJPT). First,

4330 genotyped CNVRs from 22 autosomes, identified by

a previous study in HapMap populations, were investigated.2

Genotypes of the SNPs flanking CNV regions but not involved

in CNVR were obtained from the HapMap website (NCBI build

36, release 24). Second, the genetic distance between each CNVR

and its nearest upstream and downstream SNPs was calculated

according to the local recombination rate estimation obtained

from the HapMap website (NCBI build 36) (Figure S2). The CNVRs

with a genetic distance of > 0.1cM to its flanking SNPs were

excluded from further analysis, so as to minimize the effect of

high recombination rate between a CNVR and its flanking SNPs

on the estimation of M. Overall 4187 CNVRs were enrolled in

the following analyses.

The proposed method, CNVMut, was implemented to estimate

both the statistic M and the proportion of deletion mutation for

each CNV locus by using a total of 20 flanking SNPs for each pop-

ulation, respectively. Pairwise comparisons of the estimates of M

among three HapMap populations were conducted by Spear-

man’s correlation test with the use of all of the CNVs and/or

the exclusion of those CNVs with the largest decile of Fst defined

by Weir and Cockerham.18 Fst was calculated according to allele

frequencies estimated during the CNV allele inference by EM

algorithm.

For comparison of the mutation rate of CNVs between popula-

tions and detection of mutational hotspots of CNVs, coalescent

simulations were employed in converting the estimates of M to

different orders of the mutation rate. The simulated data with

different mutation rates of CNVs at order of magnitudes

(5 3 10�7, 5 3 10�6, 5 3 10�5, 5 3 10�4, and 5 3 10�3 per gener-

ation) were respectively produced by an extension of SIMCOAL2

under the proper selection of a demographic model for each pop-

ulation.19 The demographic model used in coalescent simulations

for three populations (YRI, CEU, and CHBþJPT) is illustrated in

Table S1. In each simulation under a proper demographic model,

individuals (60 for the YRI model, 60 for the CEU model, and 89

for the CHBþJPT model) with a CNV at a given mutation rate and

20 flanking SNPs with a minor allele frequency (MAF) > 0.01 were

simulated. The recombination rate of adjacent loci, including that

between a CNV marker and its flanking SNPs and that between

adjacent SNPs, was assumed to be 10�5 per generation, based

upon the evidence including the following: (1) the estimation of

M is robust when the recombination rate between adjacent loci

is less than 10�3 per generation (Figures S3E and S3F); (2) the
an Journal of Human Genetics 87, 494–504, October 8, 2010 495



Figure 1. Distribution of the Estimates
of M in Three HapMap Populations
The distribution of the estimates of M for
3147 polymorphic CNVRs in YRI (A),
2360 polymorphic CNVRs in CEU (B),
and 1615 polymorphic CNVRs in
CHBþJPT (C) is plotted. The range of M
corresponding to a given mutation rate is
indicated in the upper part of each plot
(black for ~10�5 per generation and red
for ~10�3 per generation). The range of M
for a given mutation rate indicates the
2.5–97.5 percentile, based on 1000 coales-
cent simulations, which are based upon
properly selected demographic models for
each population.
genetic distances between CNV loci to their flanking SNPs were

less than 0.1cM and 3.96 3 10�3 cM on average; and (3) the

average recombination rate of the human genome is ~10�8 per

generation per bp,20,21 and the SNP density of HapMap Phase II

is 1.14 per kb.22

Mutational hotspots for CNVs were identified according to the

approximate estimation of the mutation rate converted from the

estimates of M. Some potential differentiating features between

mutational hotspots and the remaining loci, including the

adjacency to segmental duplications (SDs; alternatively termed

low-copy repeats [LCRs]),23,24 the recombination rate between

the CNVR and its flanking SNPs, the CNVR size and the mecha-

nisms underlying CNV formation, were compared by Fisher’s

exact test or the Mann-Whitney test. The location information

of SDs was obtained from the UCSC Genome Browser (hg 18)

for examining whether CNVs overlapped with SDs or not. The

recombination rate between the CNVR and its flanking SNPs

was obtained from the HapMap website (NCBI build 36). The

genetic diversity of the CNVR was measured by the inferred

heterozygosity according to allele frequencies estimated by the

EM algorithm. The CNV formation mechanisms were obtained

from Conrad et al.2

In addition, the potential association of the relative contribu-

tion of deletion versus duplication in the mutation rate with the

different CNV formation mechanisms was also investigated by

the Mann-Whitney test.
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Results

Evaluation of the Performance

of the Estimation

of M Using Simulated Data

The performance of the statistic M,

under both circumstances of consid-

ering demographic events or not, was

carefully evaluated and validated via

simulation approaches. Simulations

illustrated that the estimates of M in-

crease with increasing mutation rates

and can be affected by the demo-

graphic model. However, the number

of flanking SNPs used in constructing

ARGs, sample size, and recombination

rate between adjacent loci (especially
when recombination rate is < 10�3 per generation) has

only very limited effects on the estimation of M (Appendix

B and Figure S3).

The Estimation of M for the CNVRs Identified

in HapMap Populations

A set of 4330 polymorphic CNVRs as recently identified in

three HapMap populations,2 including 60 YRI, 60 CEU,

and 89 CHBþJPT, was investigated in this study. A total

of 4187 (96.7%) of these CNVRs have close flanking SNPs

with a genetic distance of 0.1 cM or less and were included

in the additional analyses. The estimates of M showed

a very diverse distribution in all three populations

(Figure 1). Notably, the estimates of M are significantly

correlated in all pairwise comparisons among three conti-

nental populations (p < 10�5), especially when excluding

the CNVRs with pairwise Fst in the largest decile

(Figure S4), suggesting the consistency of the estimation

of M among populations.

Approximate Estimation of Mutation Rates

for the CNVRs Identified in HapMap Populations

Considering the observation that the statistic M can be

affected by the demographic history of human



populations,we converted the estimates ofM to the approx-

imate mutation rate by using a simulation approach under

the proper demographic model in each population and

made M comparable across populations. The distribution

of M according to each 1000 simulations under different

demographic models19 and at different mutation rates

(5 3 10�7, 5 3 10�6, 5 3 10�5, 5 3 10�4, and 5 3 10�3 per

generation) is shown in Figure S5 (e.g., the mean 5 SD of

M is 0.258 5 0.174 for YRI, 0.158 5 0.157 for CEU, and

0.150 5 0.151 for CHBþJPT under the mutation rate of

5 3 10�5 per generation; 1.10 5 0.198 for YRI, 1.11 5

0.152 for CEU, and 1.12 5 0.153 for CHBþJPT under the

mutation rate of 5 3 10�3 per generation). The range of

mutation rates selected for simulation was based on the

contention that locus-specific mutation rates for CNV are

approximately 100 to 10,000 times greater than nucleotide

substitution rates, i.e., ~10�6 to 10�4 per generation.3 The

range of M (2.5–97.5 percentile) for a given mutation rate

in each population (Figure 1) provides an approximate esti-

mationof theorder ofmagnitudeof theCNVmutation rate.

Similar to the findings of a wide range of variability of

mutation rates among different CNV loci in the laboratory

mouse strain,5 the estimation of the CNV mutation rate in

human populations also showed variances of orders of

magnitude across the human genome. Among the 4187

CNVRs investigated in the estimation of M, the mutation

rates for most loci were estimated at the order of 10�5 per

generation. However, the mutation rates for CNVRs could

reach the order of 10�3 per generation, and these CNVRs

are likely mutational hotspots. A total of 104 (2.5%) poten-

tial hotspots were identified in three HapMap populations

(Figure S6). All of the identified CNV mutational hotspots

are listed in Table S2. Interestingly, 49 (47%) of these iden-

tified CNV hotspots involve known genes of the human

genome, suggesting their implications in biological func-

tions and human health (Table 1).

Notably, these estimators of CNV mutation rate are in

concordance with experimental observations at individual

loci. For example, mutation rates of two CNVRs involving

the a-globin genes (chr16:162,083–167,514 and

chr16:164,519–165,801, NCBI build 36) were evaluated

at the order of ~10�5 in this study, consistent with the

molecular findings in two previous studies.7,8 In addition,

the CNVR of human b-defensin genes (chr8:7,330,051–

7,342,809, NCBI build 36) was suggested to be amutational

hotspot in all three populations in this study. Interestingly,

this psoriasis-associated b-defensin locus25 was previously

reported among the fastest-mutating CNVs, with a germ-

line mutation rate of 7 3 10�3 per gamete, revealed by

a pedigree-based approach.11

Genomic Architecture and Rearrangement

Mechanisms Underlying Hotspots

We also studied some genomic features of CNV loci

between candidate hotspots (72 in YRI, 37 in CEU, and

22 in CHBþJPT) and nonhotspots (3075 in YRI, 2323 in

CEU, and 1593 in CHBþJPT) to investigate the potential
The Americ
cause of a CNV hotspot. We found that about 60% of hot-

spots overlap with SDs, whereas only< 20% of nonhotspot

CNVRs involve SDs; p ¼ 7.63 3 10�15 (Fisher’s exact test)

for YRI, p ¼ 4.39 3 10�12 for CEU, and p ¼ 7.62 3 10�9

for CHBþJPT (Figure 2A).

In addition, no significant differences between hotspots

and nonhotspots were observed for the recombination rate

between the CNVR and its flanking SNPs; p ¼ 0.138

(Mann-Whitney test) for YRI, p ¼ 0.971 for CEU, and

p ¼ 0.903 for CHBþJPT (Figure 2B). In contrast, the CNVR

sizes at the mutational hotspots are larger than those at

the remaining loci; p ¼ 0.007 (Mann-Whitney test) for

YRI, p ¼ 0.042 for CEU, and p ¼ 9.07 3 10�5 for CHBþJPT

(Figure 2C). The genetic diversity of the CNVR, measured

bythe inferredheterozygosity, is significantlyhigher forhot-

spots than that for nonhotspots as well; p < 10�5 (Mann-

Whitney test) for all of the populations (Figure 2D).

The CNV formation mechanism has been hypothesized

to affect mutation rate. The nonallelic homologous recom-

bination (NAHR) mechanism was previously proposed to

be a major mechanism underlying CNV formation.23 For

example, NHAR was shown to account for > 99% of the

neuropathy-associated CNVs in the 17p12 region.26

In addition, the loci of NAHR-mediated CNVs have been

regarded as ‘‘hotspots’’ in a previous study.27 Here, we

studied the data of CNV formation mechanisms provided

by Conrad et al.2 and found that the NAHR-mediated

events were more frequent at CNV hotspots than at the re-

maining loci, but not significantly; p ¼ 0.0518 (Fisher’s

exact test) for YRI, p ¼ 0.154 for CEU, and p ¼ 0.0629 for

CHBþJPT (Figures 2E and 2F), suggesting the involvement

of the NAHR mechanism in generating CNV hotspots.

These findings shed light on the understanding of

genome architecture and rearrangement mechanisms

underlying CNV mutations in the human genome.

Reevaluation of the Relative Mutation Rate

of Deletion versus Duplication

The CNV mutation rates associated with deletion

and duplication (alternatively, loss and gain) can be interro-

gated separately in order to investigate the respective contri-

bution of deletion and duplication in CNV mutation. It has

been proposed that deletions occur more frequently than

duplications for NAHR-mediated CNVs, reflecting the lack

of intrachromatid NAHR events in duplication rearrange-

ment.10 The deletion to duplication ratio of ~2:1 was

observed consistently at three autosomal CNV loci in a

pooled sperm PCR assay.10 At the 421 NAHR-mediated

CNV loci (both hotspots and nonhotspots) investigated in

this study, the proportion of deletion events was estimated

to be 0.7745 0.395 (mean5 SD) for YRI, 0.7155 0.436 for

CEU, and0.66750.448 forCHBþJPT. In contrast, at the182

VNTR-mediated CNV loci, the proportion of deletion events

is0.49950.472 forYRI, 0.35250.458forCEU,and0.3945

0.474 for CHBþJPT. The proportion of deletion mutation

events was significantly different between NAHR-medi-

ated CNVRs and VNTR-mediated CNVRs (Mann-Whitney
an Journal of Human Genetics 87, 494–504, October 8, 2010 497



Table 1. The Potential CNV Mutational Hotspots Involving One or More Genes

CNV ID Chr. Start (hg18) End (hg18) Location Gene(s)

YRI CEU CHBþJPT

M
Deletion
(%) M

Deletion
(%) M

Deletion
(%)

CNVR95_full 1 17548473 17551517 1p36.13 PADI4 0.730 0.0 0.555 26.2 0.489 61.0

CNVR116_full 1 25457812 25537782 1p36.11 RHD 0.671 0.5 0.714 0.0 0.445 0.0

CNVR299_full 1 109988369 110060631 1p13.3 GSTM1, GSTM2,
GSTM4, GSTM5

0.696 7.2 0.610 26.2 0.703 62.5

CNVR299.4 1 110016535 110046454 1p13.3 GSTM1, GSTM2,
GSTM4, GSTM5

0.757 0.0 0.399 0.0 0.379 0.0

CNVR481_full 1 204622578 204670033 1q32.1 SRGAP2 0.424 0.0 0.747 2.1 0.672 0.0

CNVR485.1 1 205763104 205821509 1q32.2 CR1 0.592 0.1 0.762 0.0 0.681 0.0

CNVR932.1 2 112761633 112766181 2q13 ZC3H6 0.565 0.7 0.538 0.0 0.779 0.2

CNVR2151.1 4 166377398 166378505 4q32.3 KLHL2 0.795 0.9 0.806 0.0 0.721 0.0

CNVR2664.1 5 159282379 159283692 5q33.3 ADRA1B 0.765 0.1 0.776 0.0

CNVR2728.1 6 200650 329973 6p25.3 DUSP22 0.403 0.3 0.718 0.0 0.802 1.2

CNVR2843.3 6 32066855 32093500 6p21.32 C4A, C4B 0.739 2.0 0.602 0.0 0.600 0.0

CNVR3130.1 6 160431936 160432431 6q25.3 IGF2R 0.629 0.0 0.755 0.0 0.588 0.0

CNVR3426.2 7 64204377 64274741 7q11.21 INTS4 0.833 1.7 0.807 0.0

CNVR3447.1 7 71682534 71684330 7q11.22 TYW1B 0.746 0.0 0.760 0.2 0.499 2.4

CNVR3561_full 7 126301909 126340192 7q31.33 GRM8 0.589 0.1 0.792 0.0

CNVR3585_full 7 141388076 141441024 7q34 MGAM 0.459 1.0 0.827 14.8 0.745 25.6

CNVR3618.4 7 151532774 151539767 7q36.1 MLL3 0.507 0.0 0.725 0.0 0.785 0.0

CNVR3689.1 8 584449 589454 8p23.3 ERICH1 0.731 96.2 0.474 96.3 0.607 100.0

CNVR3771.6 8 7330051 7342809 8p23.1 DEFB105A,
DEFB106A,
DEFB107B

0.773 0.3 0.883 3.3 0.778 4.1

CNVR4280.1 9 41552631 41641509 9p12 ZNF658B 0.737 0.0 0.647 0.0 0.792 0.0

CNVR4685.1 10 33229325 33230534 10p11.22 ITGB1 0.610 0.0 0.637 0.0 0.808 0.1

CNVR4729.3 10 51158267 51158937 10q11.23 PARG 0.398 2.9 0.829 0.0 0.686 0.0

CNVR5084.1 11 17166514 17167872 11p15.1 PIK3C2A 0.676 99.8 0.049 100.0

CNVR5436.1 12 11917753 11918281 12p13.2 ETV6 0.687 100.0 0.048 100.0 0.467 100.0

CNVR6188.1 14 73064141 73121720 14q24.3 HEATR4,
ACOT1,
ACOT2

0.762 0.1 0.569 0.0 0.224 0.0

CNVR6538_full 15 97007643 97011339 15q26.3 IGF1R 0.770 29.7

CNVR6668.2 16 21641198 21716960 16p12.1-
p12.2

OTOA 0.210 0.0 0.590 2.3 0.829 0.6

CNVR6764.3 16 68702855 68754003 16q22.1 MRCL, PDPR 0.617 0.0 0.766 0.0 0.625 0.0

CNVR6767.2 16 69404749 69760030 16q22.2 HYDIN, HYDIN2 0.801 0.0 0.667 0.0

CNVR6769_full 16 70646001 70669798 16q22.3 DLP, HP, HPR 0.687 0.0 0.572 0.0

CNVR6852.1 16 86580132 86581743 16q24.2 BANP 0.735 1.2

CNVR6956.1 17 3988918 3989416 17p13.2 ZZEF1 0.703 0.0 0.026 0.0

CNVR7021.1 17 20285952 20335955 17p11.2 LGALS9B 0.907 0.0 0.801 0.0 0.476 2.3

CNVR7098.1 17 36785827 36793150 17q21.1 KRT34 0.762 1.3 0.587 0.7 0.634 15.5

CNVR7144.1 17 53042845 53044836 17q22 MSI2 0.700 100.0 0.028 100.0 0.028 100.0

CNVR7154_full 17 55766887 55768922 17q23.2 USP32 0.710 100.0 0.017 100.0 0.021 100.0
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Table 1. Continued

CNV ID Chr. Start (hg18) End (hg18) Location Gene(s)

YRI CEU CHBþJPT

M
Deletion
(%) M

Deletion
(%) M

Deletion
(%)

CNVR7370.1 18 62370731 62372179 18q22.1 CDH7,
CDH19

0.829 100.0 0.077 100.0 0.012 100.0

CNVR7492_full 19 2860172 2861422 19p13.3 ZNF57 0.761 100.0 0.022 100.0 0.019 100.0

CNVR7540.1 19 11900599 11907033 19p13.2 ZNF700 0.848 3.3 0.034 0.5 0.025 0.0

CNVR7702.1 19 56823616 56842035 19q13.33 SIGLEC5,
SIGLEC14

0.898 70.1 0.865 64.6 0.417 72.8

CNVR7708.1 19 58014801 58053170 19q13.41 ZNF28, ZNF468 0.686 0.0 0.665 0.0 0.618 0.2

CNVR7726.1 19 60168046 60169697 19q13.42 NLRP2, NLRP7 0.693 0.8 0.320 5.0 0.102 12.7

CNVR7849.1 20 41705581 41707310 20q13.12 IFT52 0.813 98.5 0.770 100.0 0.011 100.0

CNVR8030.1 21 43794624 43797920 21q22.3 HSF2BP 0.740 99.9 0.676 97.5 0.012 100.0

CNVR8066.1 21 46434207 46435262 21q22.3 LSS 0.716 1.7

CNVR8067.1 21 46481946 46483100 21q22.3 MCM3APAS,
MCM3AP

0.693 96.8 0.562 99.6 0.011 100.0

CNVR8085.1 22 16871523 16873123 22q11.21 MICAL3 0.542 1.0 0.796 6.4 0.782 1.5

CNVR8136.1 22 31257932 31258517 22q12.3 SYN3 0.394 0.6 0.752 0.2 0.623 1.6

CNVR8171_full 22 41209145 41335158 22q13.2 SERHL, SERHL2, RRP7A,
RRP7B, POLDIP3

0.708 0.2 0.705 0.6 0.636 0.2
test: p< 10�5 for YRI, p< 10�5 for CEU, and p¼ 2.713 10�5

for CHBþJPT). These observations suggested the predicted

overrepresentation of deletion versus duplication at the

CNV loci mediated by the NAHRmechanism.
Discussion

Previous approaches for estimating the mutation rate for

CNVs by using molecular assays or prevalence calculation

are locus specific, and only a few CNV loci have ever been

studied in the human genome. The statistical method of

CNVMut proposed in this study makes it accessible to

evaluate the CNV mutation rate across the human

genome, though approximately, by using vast, readily

available genotyping data of human populations.

In this method, we employed LD relationship between

the CNV loci and their flanking SNPs in tracing CNVmuta-

tion events by the plausible genealogical histories recon-

structed by the flanking SNPs. Because CNV alleles are

not readily determined experimentally, we used the EM

algorithm to infer haploid copy number with the assis-

tance of the preinferred haplotypes of flanking SNPs.

According to our evaluation, the accuracy of the CNV

alleles’ inference was comparable to that of the SNP haplo-

type inferred by the EM algorithm.28 The error rate can be

controlled by less than 5%, especially with the help of

flanking SNPs (data not shown). In order to eliminate the

inflated estimation of the M statistics caused by the uncer-

tainty of the CNValleles’ inference as much as possible, we

conducted such inference for every plausible ARG and
The Americ
averaged the analysis (i.e., the M statistics). In addition,

simulations were also conducted with genotype data

when converting the statisticM to an approximate estima-

tion of the CNV mutation rate.

The statistic M was proposed to measure the minimum

effective counts of CNV mutation events based on plau-

sible ARGs constructed by flanking SNPs. The estimation

of M was based upon an assumption of the parsimony

criterion with a constant evolution rate. Any violation of

this assumption, such as different changes of different

copies following different mutation rates, would lead to

an underestimation of the statistic M.

In this study, actual mutation rates were obtained by

rescaling M with the use of coalescent simulations. The

genetic diversity of a CNV locus and its flanking SNPs

was simulated under the assumption of neutrality. Because

this estimate does not account for purifying selection, it

probably represents a lower bound on the true rate. In

addition, we examined the possible effect of varying local

recombination rate on mutation rate estimation for the

CNVRs involving the genes of a-globin and b-defensins

in YRI population and found that the estimation of CNV

mutation rate for both loci was unaffected (~10�5 and

~10�3 per generation, respectively), similar to those

estimated under the assumption of a constant recombina-

tion rate (10�5 per generation). It has also been illustrated

(Figure S3) that both the number of flanking SNPs (when>

10) used to construct plausible ARGs and the recombina-

tion rate between adjacent loci have limited and slight

effects on the estimation of M. Therefore, it is proper

to use 20 flanking SNPs and an assumed constant
an Journal of Human Genetics 87, 494–504, October 8, 2010 499



Figure 2. Comparison of CNVRs with Potential Hotspots and Nonhotspots
The percentage of CNVRs overlapping with SDs (A), the recombination rate (cM/kb) between a CNVR and its flanking SNPs (B), the
CNVR size (C), the genetic diversity of the CNVR (D), the percentage of NAHR-mediated CNVRs (E), and the percentage of VNTR-medi-
ated CNVRs (F) is illustrated for CNVRswith nonhotspots and potential hotspots. Statistically significant differences (p< 0.001) between
the hotspot group and the nonhotspot group are indicated by asterisks.
recombination rate of 10�5 per generation between adja-

cent loci for coalescent simulations to convert the

estimates of M into mutation rate.

Using this method, we identified 104 potential muta-

tional hotspots for CNVRs in three HapMap populations

(YRI, CEU, and CHBþJPT). The hotspots were defined as

CNVRs with an approximate estimation of mutation rate

at ~10�3 per generation. Figure S6 illustrates the consis-

tency of 104 potential hotspots among three populations.

More than one-half of the potential hotspots identified in

CEU and CHBþJPT can be confirmed in another popula-

tion. However, more specific hotspots were observed in

YRI. It should be noted that ancient CNV mutations are

more likely to be observed in Africans than in other popula-

tions, given that non-Africans experienced extreme genetic

drift, especially during their migration out of Africa.

Genetic diversity for hotspots is significantly higher

than that for nonhotspots (Figure 2D), which is consistent
500 The American Journal of Human Genetics 87, 494–504, October
with the observation, gathered from CNVs on the human

Y chromosome, that high mutation rate has driven exten-

sive structural polymorphism on Y.29 High genetic diver-

sity is expected to be the consequence of high mutation

rate, rather than a cause for mutational hotspots, because

mutation is regarded as a force underlying genetic diver-

sity. The enrichment of SDs at hotspots supports the

contention that SDs act as mutation seeds during genome

evolution and that SD-rich regions are vulnerable to

genome rearrangements mediating CNVs.23,24 Interest-

ingly, more CNVs at hotspots than at nonhotspots are

found to be mediated by the NAHR mechanism taking

place between two homologous SDs (Figure 2E). It has

also been shown that the other knownmechanisms under-

lying CNV formation, including DNA repair by joining of

double-strand break ends, as well as DNA replication

errors, are incident to genomic regions rich in repeat and

repetitive sequences,30–33 reflecting the regional genome
8, 2010



architecture inciting genomic instability and mutational

hotspots of CNV.

Somedisease-associated lociwere identified asCNVmuta-

tional hotspots in this study (Table 1). Besides the psoriasis-

associated CNVs of b-defensin genes mentioned above, we

also identified aCNVhotspot involving the gene of comple-

ment componentC4 (with isotopesC4A [MIM 120810] and

C4B [MIM 120820]) in association with human systemic

lupus erythematosus (SLE [MIM 152700]).34 In addition,

twomutational hotspots involve a glutathione conjugation

gene,GSTM1 [MIM138350], with implication in cancer risk

and drug resistance.35 The homozygous deletion of RHD

(MIM 111680) can cause RhD-negative blood type.36 The

CNVs at the RHD locus were reported to be highly polymor-

phic in human populations2,37 and were also identified as

CNV hotspots in this study. The IGF1R locus (MIM

147370) is also among CNV hotspots, and its deletion

CNVs can cause gene haploinsufficiency in association

with short status and other developmental defects in chil-

dren born small for gestational age.38 Notably, genomic

instability was also shown in some CNVs mediating neuro-

psychiatric traits, including the GRM8 [MIM 601116] and

HYDIN [MIM610812] loci.GRM8 encodes theglutamatergic

receptor 8, and the patient with CNV-mediated GRM8 gene

rearrangement presented autism and severemental retarda-

tion.39 The instable locus of hydrocephalus-associated

HYDIN in 16q22.2 experienced an event of duplication

and insertion into 1q21.1 during primate evolution, and

the CNVs at both of theseHYDIN loci can lead to abnormal

brain size, i.e., microcephaly ormacrocephaly.40 These find-

ings of functional CNV loci as mutational hotspots suggest

an important role of CNV in human diseases and evolution.

In addition, though we applied this method to the pub-

lished CNV genotyping data provided by Conrad et al.2

and to genotypes of SNPs from HapMap database, various

genotyping data produced by current prevailing whole-

genome SNP arrays, e.g., Affymetrix Genome-Wide

Human SNP Array 6.0 and Illumina Human1M-Duo DNA

Analysis BeadChip, can also be applied to this method.

In summary, we propose a statistical method, CNVMut,

to achieve an approximate estimation of CNV mutation

rates using genotyping data of human populations and

to identify potential CNV mutational hotspots. The

enrichment of repeat sequence at mutational hotspots

sheds light on the understanding of genome architecture

and rearrangement mechanisms underlying CNV muta-

tions in the human genome, and the observation of func-

tional CNV loci in hotspots implicates an important role of

CNV in human health and evolution.
Appendix A: An Algorithm for Estimating CNV

Mutations by Using Flanking SNPs

General Description of the Algorithm

A brief summary of the algorithm is illustrated in Figure S1

and uses an example of a CNV (0 for homozygous deletion,
The Americ
1 for heterozygous deletion, 2 for homozygous wild-type)

and five SNPs (0 and 1 for homozygotes, H for heterozy-

gote) flanking the CNV. For each CNV locus, the genotypes

of both the CNVand its flanking SNPs for individuals from

a population are used for analysis. The ARG is constructed

by using genotypes of flanking SNPs with the haplotypes

inferred simultaneously (step 1). An EM algorithm is

employed in determining the phase of CNV alleles with

the assistance of the inferred haplotypes of flanking SNPs

in step 1 (step 2). The marginal trees describing the genea-

logical history of each SNP are then obtained according to

the ARG constructed in step 1 (step 3). Each inferred CNV

allele in step 2 is then superimposed to an external node of

each marginal tree as step 4 (e.g., solid and open circles for

deletion and wild-type, respectively). The CNV states for

the internal nodes are then inferred on the basis of the

rules as defined in the subsequent section (step 5), and

the number of CNV mutation events is counted (step 6).

Because the real ARG is unknown, steps 1–6 are repeated

R times, and a statistic M is defined as the arithmetic

average of the event counts of CNVmutation in the R plau-

sible ARGs. We have developed a program called CNVMut,

which is available online, to implement the algorithm.

ARG Inference Algorithm

A method of ARG was previously proposed for reconstruc-

tion of the phylogeny on the basis of mutation, recombi-

nation, and coalescence.15 Figure S1B illustrates an ARG

of SNP haplotypes. Haplotype 2 and haplotype 4 are

respectively derived from the recombination of haplotype

3 and haplotype 5. Haplotype 5 and haplotype 6 are

conjunct by a mutation at site 4. When two haplotypes

are identical for all SNPs, they can be conjunct by a coales-

cence event. For each site of the haplotype, there is a gene-

alogical tree, called a ‘‘marginal tree,’’ embedded in the

ARG according to the impact of historical recombination

events. Figure S1D illustrates the marginal trees for sites

1–3, site 4, and site 5 from left to right, respectively.

In this study, we employed the software Margarita15 to

infer ARGs and marginal trees on the basis of the geno-

types of SNPs flanking a CNV. Margarita uses a heuristic

algorithm to infer plausible ARGs by minimizing the

number of involved recombination locally. This algorithm

allows rapid computation and can handle both unphased

and missing data.

Haplotype Inference Algorithm

An EM-based algorithm for inferring haplotype was

proposed by Excoffier and Slatkin41 for the analysis of

SNP data. Kato et al.16 extended the algorithm for CNV

data. The difference between the algorithm for CNV and

that for SNP is in the initial step during the generation of

the possible haplotype pairs for a given genotype. As for

the genotype of a SNP marker with its alleles coded as

0 and 1, a haplotype containing allele 0 and another con-

taining allele 1 are the possible haplotype pair at this site.

The alleles of a CNV loci are not readily distinguishable,
an Journal of Human Genetics 87, 494–504, October 8, 2010 501



because the possible allele/haplotype pair for a CNV with

diploid copy number of 4 can be either [0 copies/4 copies],

[1 copy/3 copies], or [2 copies/2 copies] at this locus.

To superimpose CNValleles to the marginal tree requires

the inference of CNV alleles with the assistance of the pre-

inferred haplotypes of flanking SNPs provided by the soft-

ware Margarita. In particular, all possible haplotypes

encompassing the CNV and its flanking SNPs were

enumerated, and an EM algorithm was applied to calculate

and update the frequencies of haplotypes in order to

obtain the maximum likelihood estimation, following

the iteration previously described.16,41 In the end, the

most probable haplotype pair for each individual is ob-

tained for subsequent analysis.

Counting CNV Mutations

Each CNV allele could be superimposed to the external

nodes of each marginal tree based on the inferred haplo-

types, including CNV and flanking SNPs. Then, we infer

the haploid copy number at each internal node of the

tree. Let a binary tree unit (BTU) be denoted as a subtree

with three nodes (two ends and one vertex) as shown in

Figure S1D. The haploid copy number of each node is

referred to as its state hereafter, and the state of each

internal node is inferred according to the following rules:

(1) Only when the states of both ends of the BTUs have

been inferred can the state of the vertex be inferred. (2) If

the state of any end is ancestral (‘‘1’’ is set as the ancestral

state here), the state of the vertex is set as the ancestral one.

(3) If none of the states of two ends is ancestral and they

are mutually exclusive, the union of the states of two

ends is taken as the state of the vertex. (4) If none of the

states of two ends is ancestral but not mutually exclusive,

the intersection of the states of two ends is taken as the

states of the vertex and both ends. (5) The procedure

continues until all nodes of the marginal tree are updated.

Given that the states or haploid copy numbers of all

nodes are inferred, the number of mutations can be

counted for each marginal tree by traversing all of the

BTUs of the marginal tree. If the states of the two ends

are different, one mutation is added to the count. If L

SNPs are used in ARG construction, L marginal trees and

L estimators of the number of mutation are obtained.

The smallest count is taken as the estimator of the plau-

sible ARG, which can be considered as an approximate

estimator of the most parsimonious mutation process.

Notably, deletion mutation events and duplication muta-

tion events can be counted separately along this parsimo-

nious marginal tree, in order to compare mutation rates

between deletion and duplication. Because the real ARG

is unknown, the average of the estimator for R plausible

ARGs (R ¼ 100 here) is taken. For example, the statistic

describing a CNV mutation can be expressed as

M ¼
PR

r¼1

minL
l¼1fMrlg

NR
;
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where Mrl is the estimator of the mutation number for the

l-th marginal tree of the r-th plausible ARG and N is the

sample size.
Appendix B: Evaluation of the Performance

of the Estimation of M with the Use

of Simulated Data

Simulation Data

The program SIMCOAL217 was employed in simulating the

neutral genetic diversity of a CNV marker and its flanking

SNPs under variable mutation rates and different demo-

graphic models. Because SIMCOAL2 allows short tandem

repeat (STR) markers but not CNVs, simulations were con-

ducted by using a STR marker as a surrogate of CNV. The

most common allele of STR was converted to the ancestral

allele with a haploid copy number of 1. The STR alleles

shorter than the common one were set as 0 for the CNV,

and the STR alleles larger than the common one were set

as 1 þ d for the CNV, where d is the difference of copy

number between the STR alleles and the common allele.

In the simulation, a constant population with an effec-

tive population size (Ne) of 5000 was assumed and the

sample size was set to 100 individuals. A haploid consisting

of a CNV along with 20 flanking SNPs with an MAF greater

than 0.01 was generated. The mutation rate for CNV was

set to 5 3 10�5 per generation, and the rate of recombina-

tion between adjacent loci (including that between the

CNV locus and its flanking SNPs and that between

adjacent SNPs) was 10�5 per generation. However, when

the effect of an individual factor was interrogated,

numerous values were taken in simulation. The genotype

of a diploid individual was then generated by combining

two randomly selected haploids.

The Estimates of M Increase along with Increasing

Mutation Rates

The estimates of M increase along with the increasing

mutation rate of CNV (5 3 10�7, 5 3 10�6, 5 3 10�5, 5 3

10�4, and 5 3 10�3 per generation) for simulated data

(Figure S3A), indicating that M could allow a comparison

of the mutation rates among CNV loci. For example, the

distributions of M are significantly (p < 10�5; Mann-Whit-

ney test) different between the mutation rates of 5 3 10�5

and 5 3 10�3 per generation.

Effect of Demographic Models on the Estimation of M

Simulation analysis showed that the estimates of M

increase along with increasing effective population size,

even under the same mutation rate. For example, the

estimates of M increase along with the increasing effective

population size (2500, 5000, and 10,000) under a given

mutation rate (Figure S3B). These observations suggest

that population demographic profiles must be taken into

consideration when converting the estimates of M to

mutation rate.
8, 2010



The Estimation of M Is Not Affected by the Number

of Flanking SNPs or the Sample Size

We also investigated the possible effect of the number of

flanking SNPs (10, 20, 30, 40, and 50) and the sample

size (50, 100, 150, 200, and 250) on the estimation of M.

The simulation results showed that neither an increasing

number of flanking SNPs nor increasing sample size would

affect the estimation of M, besides a slight reduction of

variance (Figure S3C and S3D).

Effect of Recombination Rate between a CNV

and Its Flanking SNPs on the Estimation of M

The LD relationship between CNVs and flanking SNPs was

employed in our proposed method. The impact of recom-

bination rate (10�6, 10�5, 10�4, 10�3, 10�2, and 10�1 per

generation) between a CNV locus and its flanking SNPs

on the estimation of M was evaluated. Our observations

indicated that the estimation of M was robust when the

recombination rate was less than 10�3 per generation

and that a recombination rate of 10�3 per generation or

above can inflate the estimates of M (Figure S3E).

Effect of Recombination Rate between Adjacent SNPs

on the Estimation of M

The effect of recombination rate (10�7, 10�6, 10�5, 10�4,

and 10�3 per generation) between adjacent SNPs on the

proposed algorithm for estimating M was also examined

by simulation. It was illustrated that the estimation of M

was robust to varying recombination rates between adja-

cent SNPs (Figure S3F).
Supplemental Data

Supplemental Data include six figures and two tables and can be

found with this article online at http://www.cell.com/AJHG/.
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